
HUNT LAB FOR INTELLIGENCE RESEARCH

School of BioSciences
Parkville, Victoria, Australia

huntlab.science.unimelb.edu.au

Enhancing human analysis of large corpora
via argument mining and backlinks—a prototype

March 2021

Researchers

Luke Thorburn luke.thorburn@unimelb.edu.au

Contact

A/Prof. Tim van Gelder

Director
Hunt Lab for Intelligence Research
University of Melbourne

t.gelder@unimelb.edu.au
+61 438 131 266

Distribution
This document is UNCLASSIFIED.

1

huntlab.science.unimelb.edu.au
mailto:luke.thorburn@unimelb.edu.au
mailto:t.gelder@unimelb.edu.au
tel:61438131266


1 Non-Technical Overview
Information overload is pervasive in intelligence analysis [23, p. 22]. This technical report documents
the development of Navigator—an experimental, prototype application designed to enhance an
analyst’s ability to quickly extract insight from a large corpus of documents related to a given
topic. It is designed to help answer questions such as:

1. What claims are being made, and with what frequency?
2. Who is making them?
3. What arguments are presented for or against each claim?
4. Which claims are most/least contested?

Beyond augmenting the abilities of individual analysts, the tool addresses a fundamental chal-
lenge facing the establishment of a competition-based marketplace for citizen intelligence work—
namely, the ability to extract insight from submitted intelligence reports. If successfully imple-
mented, such a marketplace would increase intelligence organisations’ access to high-quality anal-
ysis, whilst improving public trust [8].

Figure 1: A screenshot from Navigator, the prototype application.

The application has two components: an argument mining system and a graphical user interface.

Argument Mining

Argument mining is the automated extraction of reasoning structure from text. An argument
mining system takes sets of documents (e.g., intelligence products, articles, transcripts or web
pages) as input, and outputs a set of the claims made therein, along with the argumentative
relations between them. Argument mining is a rapidly-developing area of artificial intelligence, in
the sub-field of natural language processing.

In Navigator, users are able to upload their own texts. These are then analysed by an argument
mining system that uses two neural networks to first identify claims in the source texts, and then
classify the argumentative relations between the identified claims. This abstract argument graph
is then presented to the user via a graphical user interface (see below).

Performance of the argument mining models is sufficient to serve as a proof of concept, but is
necessarily imperfect. This is partly due to the constraints of the project and partly due to the fact
that this work tackles challenges that have received little previous research attention, such as the
fact that we are performing multiple-document (rather than single-document) argument mining.
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Improving the reliability of the tool will likely require the creation of new datasets tailored to the
intelligence context, as well as innovation in the design of neural networks for argument mining.

Further details of the argument mining system can be found in Section 3.

User Interface

Most commonly, argumentative structure is visualised as graph, where nodes correspond to claims
and edges correspond to relationships between claims. Such user interfaces can be cumbersome to
interact with on screens, and anecdotal evidence suggests that they struggle to attract widespread
adoption.

Navigator has a novel user interface (Figure 1) that facilitates exploration of the extracted
arguments, without making the graph structure explicit. It is modelled on recent innovations in
the design of notetaking applications such as Roam Research and Obsidian. These applications
have bidirectional links or backlinks, which make it easy to see which notes link to any given note.
(Picture a situation in which at the bottom of every webpage there was a list of all the pages that
link to that page.) Navigator generalises the concept of bidirectional links to capture the different
types of relations (support, attack, equivalence) present in argument maps.

The interface is already quite usable, but could benefit from improvements to allow it to save
and restore the currently-open set of panes, to better preserve the context in which panes were
opened, and to visually aggregate claims that are sufficiently similar.

Further details of the user interface can be found in Section 4.

The prototype can be accessed at https://hunt-laboratory.github.io/navigator/.
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2 Technical Overview
Navigator is an experimental, prototype application designed to enhance an intelligence analyst’s
ability to quickly extract insight from a large corpus of documents. It was developed as part of
the AI for Decision Making Program, a collaborative initiative of a number of Australian defence
science organisations.

This report separately documents the two main components of the application: an argument
mining system and a graphical user interface.

Argument Mining

A pipeline of two neural networks extracts a multi-document argument graph from a set of user-
uploaded texts. The two neural networks respectively perform the argument mining sub-tasks of
argument component identification and argument relation classification.

Argument component identification is structured as an IOB sequence tagging problem over
token embeddings, and performed using a bidirectional LSTM. Argument relation classification is
performed using a network of two identical bidirectional GRUs, augmented with a multiplicative
attention mechanism.

Given the constraints of the project, performance of the models is below state-of-the-art, but
sufficient to serve as a proof of concept. New dataset creation and a transition to an end-to-end
argument mining system are likely necessary directions for future work, in order to improve the
reliability of the tool.

Full details of the datasets, model architectures, deployment infrastructure, evaluation, and
anticipated directions for future work can be found Section 3.

User Interface

The user interface provides a novel way of interacting with a multi-document argument map for
the purposes of surfacing potentially relevant evidence and hypotheses.

It is modelled on recent innovations in the design of notetaking applications such as Roam Re-
search and Obsidian. These applications can be viewed more generally as interfaces for interacting
with graph structures over sections of text, one example of which is graphs of argumentative struc-
ture. Drawing on this analogy, Navigator generalises the concept of bidirectional links or backlinks
used in these applications to capture the typed relations (support, attack, semantic similarity)
present in argument maps.

The interface is already quite usable, but could benefit from improvements to allow it to save
state, preserve context and aggregate semantically similar claims, as well as to undergo usability
studies.

A full rationale for the user interface design, a review of relevant history of argument visualisation
and networked note repositories, technical details of the interface implementation and anticipated
directions for future work can be found in Section 4.

The prototype can be accessed at https://hunt-laboratory.github.io/navigator/.
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3 Argument Mining
3.1 Background
Argument mining—the automatic extraction of the argumentative structure of prose or dialogue—
is a natural language processing (NLP) task that is gaining increasing attention, though it remains
more niche than many other NLP tasks due its relative complexity and a shortage of high-quality
labelled datasets. Interpretation of the task itself is also inconsistent, with many variants occuring
in the literature [41]. Broadly speaking, the goal is to input a text (be it a scientific article, opinion
piece, forum thread, chat history, or something else) and return an argument map. An example of
an argument map can be seen in Figure 6. In contrast to manually-created argument maps, the
nodes in an argument map returned from an argument mining algorithm are generally verbatim
or lightly processed excerpts from the original text, and may not be standalone, well-phrased
statements when viewed in isolation. For recent surveys of the field, see [18, 15].

Argument mining is commonly decomposed into a pipeline of simpler tasks. In this project, we
used two steps.

1. Segmentation First, the text is segmented into spans that each correspond to at most one
argumentative unit: a proposition or statement that could serve as a premise, reason or
conclusion to an argument. For brevity, we will refer to such statements as claims (acknowl-
edging that in the literature, the term ‘claim’ often refers specifically to the conclusion of an
argument).

2. Classification Next, pairs of claims are classified on the basis of the argumentative relation-
ship between them. For example, given claims a and b, does a support b? Does b attack a?
Do a and b mean the same thing? Or are they unrelated?

Segmentation is usually approached as a sequence-tagging task, often using the IOB conven-
tion [27]. In this setup, the input text is tokenized, and then each token is assigned a label: B if it
marks the beginning of a claim, I if it falls elsewhere within a claim, and O if it is not part of any
claim. In effect, this is a three-class classification problem for each token in the text.

Inspired by the state-of-the-art performance of a BiLSTM-CNN-CRF architecture on sequence
tagging tasks such as named entity recognition and part-of-speech tagging [19], a number of recent
papers have used this framework for argumentative unit extraction [5, 37]. In this approach, the
BiLSTM is the base model, with a convolutional neural net (CNN) used to produce character-level
embeddings to describe words not seen during training, and a Conditional Random Field (CRF)
[13], which is a purely probabilistic model, used to capture dependencies between adjacent tags
(such as the fact that an I can never directly follow an O).

This combined approach supercedes previous attempts that used CRFs directly, working with
extracted properties of the input text [35, 32]. This approach was found to struggle to capture long-
range dependencies between tokens. Exclusively deep learning approaches have also been used, such
as the layering of multiple Bi-LSTMs described in [1].

Yet earlier attempts simply classify whole sentences as argument or non-argument based on
extracted properties [21], or used two Naive Bayes classifiers based on properties of local 3-grams,
to classify words as demarcating the beginning or end of a claim [17].

The second task, argument relation classification, has also seen a number of approaches employed.
Lawrence and Reed [16] explored how discourse indicators (‘because’, ‘therefore’, ‘however’) may
be used to identify argumentative relations, and conclude that their use can achieve high precision
but low recall, because only a small proportion of relations between claims are signposted in this
way.

Recent work relies on recurrent neural networks over token embeddings to produce represen-
tations of two given claims, which are then fed into a classifier. Cocarascu et al. [6] explore four
different architectural variants of this approach (which variously make use of GRUs, autoencoders
and attention mechanisms), and assess their performance on a diverse set of argument-annotated
datasets. They find that with non-contextual embeddings, an attention-based model tends to per-
form best across multiple datasets.

A fundamental limitation of pipeline approaches to argument mining is that, because each sub-
task is completed imperfectly, error will accumulate as the data proceeds through the sequence of
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tasks. One alternative is to train all the models simultaneously, and jointly optimise the parameters
of each model. Equivalently, the task can be structured such that it can be completed in a single
step, by a single model. Both approaches fall under the umbrella of end-to-end argument min-
ing. Though this is the not the approach taken here, we believe that end-to-end argument mining
systems will emerge to consistently outperform pipelines with independently-trained components,
and that this should be the approach taken going forward. See Section 3.6 for more on end-to-end
argument mining.

The needs of this project went beyond existing literature in a number of directions. To our
knowledge, the following aspects of the problem have received little prior attention.

• Multiple texts The system needs to be able to extract a combined argument map from
a potentially large number of documents. Existing literature is primarily concerned with
single-document argument mining.

• Multiple text types To be useful to analysts, the system may need to be sufficiently general
that it could work with multiple text types. Most of the existing models used for argument
mining are trained and evaluated on a single, stylistically homogeneous dataset. Previous
work has considered multiple topics [34], but not multiple text types.

• Relationship types Most existing systems for argument relation classification assume that
there are at most three types of relationships: support, attack, or no relation. To be useful,
particularly when mining arguments from large corpora, we think it is a requirement to con-
sider a fourth relationship: whether two claims are semantically similar. If detected reliably,
such a relationship could be used to ‘collapse’ nodes in the resulting argument graph, which
would simplify the structure, reduce redundancy and help identify support or attack rela-
tions that may otherwise not have been found. Though similarity or argumentative rephrase
relationships have been considered in the literature [12, 30, 2], they are rarely included as a
class in argument relation classifiers.

3.2 Datasets
Due to the limited time available for this project, it was necessary to make use of existing argument-
annotated corpora. In order to explore the feasibility of training a single system that would work
across multiple domains and text-types, we aggregated multiple datasets: three for the segmenta-
tion task (S), and five for the classification task (C). The following table describes each dataset,
the processing that was required to convert it to a common format, and how each dataset was
partitioned into training, validation and test sets.

Dataset Tasks Citation
IBM Debator Claims and Evidence
547 Wikipedia articles of relevance to one of a set of 58 de-
bate topics, such as ‘the sale of violent video games to minors
should be banned’. Spans in each article are highlighted if they
represented a claim about the topic, or a piece of evidence that
supports a claim. In total, the dataset contains 2,294 claims,
and 4,692 evidence phrases.

This dataset was structured such that the claim and evi-
dence phrases were stored in spreadsheets, separated from the
original article text. Thus in order to format the data for an
IOB sequence tagging task, the claim and evidence phrases
needed to be located and annotated in the original text. This
was performed with the aid of the PhraseMatcher function
within the spaCy Python library. The matching was imperfect,
due to differences in the phrases between the spreadsheets and

S + C Rinott et al. [31]
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Dataset Tasks Citation

the original texts. For example, sometimes new line characters
that occurred mid-phrase in the original text were not included
in the spreadsheet. Similarly, in some cases the tokenisation
of the reported phrase did not match up with the tokenisa-
tion of that phrase in the original article. Reasonable efforts
were made to overcome these challenges, including searching
for slightly truncated versions of the phrases to avoid tokenisa-
tion issues at the phrase boundaries. Ultimately, 112% of the
claims were re-identified (this is possible due to the trunca-
tion), and 101% of the evidence phrases. Articles with fewer
than 5 annotated phrases were removed, reducing the number
of articles to 255 for the segmentation task.

All relevant pairs of evidences and claims from the full
dataset were added to the classification dataset as examples of
support relations. Additionally, 1,000 unrelated pairs of state-
ments were randomly sampled from different topics (to give a
high chance of being truly unrelated).

In the original dataset, debate topics were already as-
signed to either a ‘train and test’ or ‘held-out’ tranche. We
used the ‘train and test’ set as our training set, and randomly
assigned half of the ‘held-out’ set to be our validation set, and
the other half to be our test set.
Dr Inventor
40 scientific articles from the field of computer graph-
ics, annotated for three types of claims (own_claims,
background_claim and data) as well as three types of rela-
tions (supports, contradicts, semantically_same).

The data was formatted as text files of the original articles,
along with TSV spreadsheets describing the annotations for
each article, in the format used by the Brat annotation tool.
Thus, as with the first dataset, the extracted phrases needed to
be relocated in the original articles for sequence tagging. Each
extracted phrase was provided with the character position of
its start and end points within the article, so these were used
for reidentification. Due to the fact that some of the character
indices did not align with token boundaries, only 99.12% of
phrases were successfully reidentified.

All argument relations from the original dataset were
added to the classification dataset with the labels more-or-
less preserved. Pairs annotated as semantically_same were
relabelled as semantically_similar, because we wanted to
broaden the strictness of that class to be compatable with other
datasets used. Additionally, for each article 50 pairs of claims
with no relation specified were randomly sampled and added
as examples of the no_relation class.

This dataset was not already partitioned, so we randomly
assigned 30 articles to our training set, and 5 each to the vali-
dation and test sets.

S + C Lauscher, Glavaš, and
Ponzetto [14]
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Dataset Tasks Citation

Persuasive Essays
402 short persuasive essays on almost as many topics.

The data was formatted identically to that of the Dr In-
ventor corpus, and so the phrase re-identification process was
analogous. 99.92% of phrases were successfully re-identified.

The extraction of claim pairs for classification is also anal-
ogous to the previous dataset. Because the essays were shorter
than the scientific articles, in each essay 20 randomly-selected
pairs of claims with no relation specified were added as exam-
ples of the no_relation class.

This dataset was already partitioned into ‘train’ and ‘test’
sets. We left the test set as is, but further randomly selected
the same number of essays as was in the test set from the ‘train’
set to be our validation set. The remainder were assigned to
the training set.

S + C Stab and Gurevych
[33]

IBM Debator Claim Stance Classification
2,394 claims extracted from Wikipedia articles related to one of
55 debate topics. Each is annotated with PRO or CON, specifying
the relationship of the claim to the topic.

This dataset was only used for the relation classification
task, so the claims did not need to be relocated in the original
articles.

PRO labels were mapped to support, and CON labels were
mapped to attack.

Topics were assigned to a ‘train’ or ‘test’ partition. We left
the training set as is and randomly split the test partition, with
half of those topics become our validation set. The remainder
were left as the test set.

C Bar-Haim et al. [3]

UKP ASPECT Argument Similarity
3,595 pairs of sentences, each labelled with the degree of sim-
ilarity between them. The labels were ‘Different Topic/Can’t
decide’ (DTORCD), ‘No Similarity’ (NS), ‘Some Similarity’ (SS)
and ‘High Similarity’ (HS). The labelling captured whether the
two sentences belong to the same topic, and if so, whether they
are talking about the same aspect of that topic, or are saying
the same thing using different words.

This dataset was only used for the relation classification
task, so the claims did not need to be relocated within their
origin texts.

All relation labels were mapped to no_relation, except
for HS which was mapped to semantically_similar.

Of the 28 topics, 18 were randomly assigned to the training
set, and 5 each to the validation and test sets.

C Reimers et al. [30]

As we intended for our classification model to work in both directions (that is, to be equally
informative regardless of the order in which the two claims are inputted), all pairs of claims were
added to the dataset in both directions. The set of classes used in the classification dataset is as
follows.

• no_relation

• supports
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• is_supported_by

• attacks

• is_attacked_by

• semantically_similar

After the processing described above, we had created one dataset each for the segmentation and
classification tasks.

The segmentation dataset contained 442 documents and 19,557 claims. The classification dataset
contained 64,170 pairs of claims. This is comprised on 28,350 no_relation, 15,421 supports,
15,421 is_supported_by, 1,985 attacks, 1,985 is_attacked_by, and 1,008 semantically_similar.

Originally, we had intended to include in the training data a corpus of intelligence products
written during a series of exercises on the Hunt Lab SWARM platform, most notably the 2018
SWARM Challenge and the 2020 Hunt Challenge. These reports are authored by teams of analysts,
who were either professional analysts of organisations with intelligence capabilities, members of
the public recruited from the Hunt Lab’s research pool, or university students. In the end, full
annotation of these reports proved infeasible in the time available, so they were not used for model
training. We did, however, annotat 9 such reports, all addressing the same fictional problem which
consisted of assessing the likelihood that a suspected employee of a high-end audio equipment com-
pany was conducting corporate espionage. Annotation was undertaken using the OVA annotation
tool [10].

Though not used in for training the models, we believe that this type of dataset—where a number
of documents are all related to a common topic—is one of the more promising contexts in which
to apply this technology. As such, the dataset is available in the prototype application to explore
for demonstration purposes.

While we originally intended to perform considerable hyperparameter tuning, this was not ulti-
mately possible due to time constraints, so there was no real need to have both a validation and a
test set. Thus, the test set went unused, but is available for future work.

3.3 Segmentation
3.3.1 Task

We structured the task as an IOB sequence tagging task. The model took in a sequence of token
embeddings, and returned a softmaxed probability distribution over the 3 classes (B, I, O) for each
token.

The token embeddings used were those from the pre-trained spaCy en_core_web_md language
parser. Each vector had length 300. No features other than the semantic token vectors were used,
and the embeddings were not finetuned on our dataset.

Loss Function Mean, unweighted cross-entropy loss over each token-level classification.
Evaluation Metric For the evaluation metric, we used a generalised version of the F1 score

designed to capture meaningful information about the success of segmentation tasks such as this.
The F1 (x%) score is calculated analogously to a conventional F1 score, but with a different
definition of a ‘match’. Here, a predicted span is said to match a pre-labelled span if they share x%
of their tokens [24]. The denominator of the percentage is taken to be the length of the longest of
the two spans. Also, because our model must learn rules about what sequences of labels are valid,
we manually correct OI to OB to allow the F1 scores to be computed.

3.3.2 Architecture

Based on the recent successes of Bi-LSTMs for argument unit segmentation, we used a relatively
simple architecture consisting of a single-layered Bi-LSTM, followed by a few fully-connected layers
to produce a softmax classification for each token from the output of the Bi-LSTM. A schematic
of the architecture used can be seen in Figure 2.
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Figure 2: High-level architecture of the model used for the segmentation task.

Both the LSTM hidden state and the fully-connected classification layers were of size 100. The
dropout probability used was 0.5.

3.3.3 Results

We trained the network using stochastic gradient descent with a mini-batch size of 16 for 370
epochs, which took about 20 hours on our cloud machine (8 Intel Xeon vCPUs, 1 NVIDIA Quadro
M4000/P4000 GPU, 8GB RAM). The learning rate and momentum parameters were fixed at 0.1
and 0.9, respectively. The loss and evaluation metric values on the training and validation sets
during training can be seen in Figure 3.

Figure 3: Loss and evaluation metrics during training for our segmentation model. It took about
100 epochs for the model to start learning. After 370 epochs, we decided to halt training
as it appeared the model was starting to overfit. For deployment, we used the 305-epoch
model.
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The training was monitored throughout and was halted when it appeared the model was starting
to overfit, as indicated by the plateauing of the validation cross-entropy loss and the deterioration
in the validation F1 (50%) score.

The model used in deployment was that which was saved at the 305-epoch checkpoint. For this
model, the validation cross-entropy loss was 0.36, the F1 (50%) score was 0.50, and the F1 (90%)
score was 0.31.

For context, state-of-the-art results on a comparable task obtained by Eger, Daxenberger, and
Gurevych [7] produced an F1 (50%) score of 0.51, and an F1 (100%) score of 0.45. But that result
was attained on a less diverse dataset (the persuasive essay dataset which is a subset of ours), and
employed a more sophisticated model as well as hyperparameter optimisation, which we did not
attempt due to time constraints.

In practice, for any text there is a large set of possible segmentations which could be considered
admissible, of which the annotations in the training data are just a single example. Thus, while
the F1 scores obtained are low, in practice most of the claims extracted appear to be coherent.

3.4 Relation classification
3.4.1 Task

The task is a simple classification problem for each pair of claims. The model takes in two se-
quences of of token embeddings (one sequence for each of the two claims), and returns a softmaxed
probability distribution over the six classes (no_relation, supports, is_supported_by, attacks,
is_attacked_by, semantically_similar).

We chose to include symmetric pairs of classes (such as supports and is_supported_by) where
applicable, so that the model would be able to classify relationships between the two claims in
either direction.

Again, the token embeddings used were those from the pre-trained spaCy en_core_web_md
language parser. Each vector had length 300. No features other than the semantic token vectors
were used, and the embeddings were not finetuned on our dataset.

Loss Function Cross-entropy loss for each classification problem. Each of the classes were
weighted inverse-proportionally to the number of examples in the dataset. This was to ensure
the model was incentivised to learn to recognise classes with few examples.

Evaluation Metric For the evaluation metric, we used the conventional F1 score, treating each
of the classes as a binary classification problem.

3.4.2 Architecture

The architecture used is a modified version of the attention-based architecture which was found to
be most successful across domains by Cocarascu et al. [6].

First, the sequence of token vectors for each claim are each fed through a bidirectional Gated
Recurrence Unit (GRU) of hidden size 128 to produce a representation of each claim of size
(256, n_tokens).

Next, this representation of each claim is attended to the representation of the other, and these
attended representations are concatenated to the representations of the respective original claims.
The attention scores are computed using the same multiplicative attention formulae provided in
the original paper [6, Sec. 3.2.4].

These contextual representations of each claim (of size (256, 2×n_tokens)) are then fed through
a second bidirectional GRU. The final hidden states of these GRUs are concatenated row-wise into
a vector of size (1, 512) and fed through a single fully connected layer of size 128, and then to a
softmax layer of size 6 (one element for each class). Either side of the fully connected layer, we
apply dropout with probability 0.5, and follow it with ReLU activation.

Key differences between this architecture and that specified in [6] are that we use bidirectional
(rather than unidirectional) GRUs, and that we do not make use of additional features that describe
textual entailment, sentiment, or syntax.

A schematic of the architecture used can be found in Figure 4.
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Figure 4: High-level architecture of the model used for the segmentation task.

3.4.3 Results

We trained the network using stochastic gradient descent with a mini-batch size of 64 for 210
epochs, which took about 8 hours on our cloud machine (8 Intel Xeon vCPUs, 1 NVIDIA Quadro
M4000/P4000 GPU, 8GB RAM). The learning rate and momentum parameters were fixed at 0.1
and 0.9, respectively. The loss and evaluation metric values on the training and validation sets
during training can be seen in Figure 5.

The training was monitored throughout and was halted when it appeared the model was no
longer meaningfully learning. In most cases, the validation loss and evaluation metrics peaked
at around the 20-epoch model, then deteriorated slightly and plateaued. The cross-entropy loss
indicated severe overfitting after 210 epochs, but unusually this was not reflected in the F1 scores
for each class.

The model used in deployment was that which was saved at the 20-epoch checkpoint. For this
model, the validation cross-entropy loss was 1.63, the F1 scores for each class are given in the
following table. Classes with a larger number of training examples were more successfully learned.

Class F1 Score
no_relation 0.621
supports 0.543
is_supported_by 0.541
attacks 0.163
is_attacked_by 0.165
semantically_similar 0.069

For context, Cocarascu et al. [6] obtained average F1 scores of 0.449 for attack relations, and
0.640 for support relations. Our results fall short of this benchmark, though our task was likely
made more challenging by the fact we trained on a pool of multiple datasets (rather than each
dataset separately), required classification over a greater number of classes, and only used semantic
features. We also relied on their hyperparameter values and did not perform our own optimisation
due to time constraints.

Qualitatively, the performance of this model appears to be very hit-and-miss. Many of the
classified argumentative relations are nonsense, particularly for those classes of which there were
relatively few training examples. But successful classifications are not infrequent, and suggest that
such models might obtain a useful degree of accuracy with sufficient time, data, and exploration
of different architectures and hyperparameters.
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Figure 5: Loss and evaluation metrics during training for our relation classification model. Evalua-
tion metrics plateaued fairly quickly as training progressed. In deployment, we used the
20-epoch model.

3.5 Deployment
We used Cortex to deploy the trained models to an Amazon Web Services cluster and set up an
API to allow the models to be queried by the user interface (UI).

The AWS cluster used was in the ap-southeast-2 region, was of instance type m5.large, and
was attached to a 50GB gp2 volume. This instance costs about USD0.33/hour to run.

With this available compute, the API can process up to around 12 medium length documents
per call, before it times out after 30 seconds.

The API was structured such that it performs all required analysis of a set of documents in a
single API call. At a high level, this involves:

1. Tokenising and vectorising the documents using the spaCy parser.

2. Passing the documents through the segmentation model to identify claims.

3. Producing candidiate pairs of claims from within each document that have a reasonable
chance of being related. This is necessarily a subset of all possible relationships, because it it
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computationally infeasible to consider all
(# claims

2
)

possible relations. In our implementation,
we considered possible relations between claims that were no more than 5 claims distant from
one another.

4. Classifying all candidate within-document relations using the classification model.

5. Computing the Katz centrality of the claims within each document. Katz centrality is a graph
theoretic measure of centrality that assigns a score to each vertex (in our case, each claim)
based on the number and length of incoming paths (in our case, chains of reasoning) [11].

6. Generating candidate pairs of claims from different documents that have a reasonable chance
of being related. There are many possible ways of doing this. In our case, we took the three
most central claims from each document as measured by Katz centrality, and considered all
possible cross-document pairings of this reduced set of claims.

7. Classifying all candidate cross-document relations using the classification model.

8. Formatting all annotations appropriately, including versions of each of the original texts
marked up with HTML spans indicating the identified claims.

To allow analysis of a greater number of documents (which would likely be required in practice),
the API calls could be restructured such that each model query requires its own API call, and all
the peripheral, non-ML data wrangling could be relocated to the client side. This would also have
the added benefit of being able to display progress messages to the user as the analysis progresses.

However, if we shift to an end-to-end argument mining approach, as is proposed in the following
section, then most of the analysis would necessarily need to take place within a single API call. In
this case, increasing the capacity of the system would require optimising the server-side analysis
code, increasing the available compute, and/or increasing the timeout threshold on the API.

3.6 Future work
This section describes directions for future work, many of which would be required for this tech-
nology to mature to the point where it is robust enough to be useful for routine use by analysts.

Dataset creation We are not aware of any labelled datasets currently available for training models
to perform multi-document argument mining. At best, we can do what we have done here and
use datasets for single-document argument mining, under the assumption that inter-document
argumentative relations will be of a similar nature to intra-document argumentative relations. But
this assumption is unlikely to hold in practice, because inter-document relations will in many cases
exist between two claims that were written by different authors and hence be stylistically distinct,
whereas intra-document relations will in most cases be between two claims that were written by
the same author, using similar terminology and styles.

In order to train robust multi-document argument mining models, high-quality annotated cor-
pora will likely be required, where the annotations include both intra- and inter-document argu-
mentative relationships.

The source documents included in these corpora should be tailored to the types of documents that
analysts will need to analyse in practice, to ensure that the principles the model learns generalise
adequately to unseen texts. This may include just one text type (such as prior intelligence reports),
or a diversity of text types (chat transcripts, news articles, emails, forum posts, etc) as required.
Such needs would need to be determined in collaboration with the stakeholders.

If intelligence reports form a text type of interest, then the accumulated corpus of reports
generated at the Hunt Lab in response to fictional intelligence-style problems might provide quality,
non-sensitive source material for annotation. The SWARM reports would likely not, however, be
sufficient in volume, and would need to be supplemented with additional source material.
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End-to-end argument mining As noted in Section 3.1, the pipeline approach to argument mining
used here suffers from the propagration of error that occurs when each task in the pipeline is
performed imperfectly. Additionally, the relation classification task is structured such that the
model effectively receives no input but the text of the two claims between which it is to classify
the argumentative relationship. It does not have access to import contextual information, such as
the surrounding text, the authors of each claim, which documents the claims come from, whether
the claims come from the same document, and if so, how proximate they are and what text segues
from the first claim to the second. All this information would be of relevance to determining the
relationship between too claims, and devoid of such context the classification task attempted here
would be difficult for even expert humans to perform at a high level.

One promising family of solutions to this is to structure the task such that it can be completed
in a single step by a single neural network [40, 22], to globally optimise the claims and relations
using Integer Linear Programming [35], or to jointly train a collection of models so that their
interactions are optimised and error propagation is kept to a minimum [7]. Such approaches are
known as end-to-end argument mining. End-to-end argument mining methods have been shown to
achieve significant improvements over pipeline approaches [24].

In particular, we think that articulating argument mining as a single-step task is the approach
that will prove most fruitful long term. In the case of single-document argument mining, one way
to articulate the task as a single step is to approach it as a sequence-tagging problem, where the
tags include the indices of related components. This can be achieved by using attention modules in
a neural network to determine which other segments are related. This type of network is called a
pointer network [40]. This approach was pioneered by Potash in his PhD thesis [25], and a resulting
paper [26], and has been explored further in [22].

Additional work is required to explore how multi-document argument mining can be structured
as a single-step task, or a task that a single multi-task trained neural net can undertake, and what
architectures are capable of learning this task.

Other improvements
• Due to limitations of time and funding, in this work we relied almost solely on previous

research to inform architecture design and hyperparameter values. Future work would explore
multiple model architectures and perform hyperparameter optimisation to produce more
reliable models.

• Likewise due to time constraints, we did not implement simple baseline models to provide
a benchmark for model performance. In this case of segmentation, such benchmarks might
include a simple rule-based algortihm such as sentence segmentation. In the case of classi-
fication, majority classification would be an obvious choice. More sophisticated non-neural
baselines might also be considered.

• As discussed in Section 3.5, the current method of deployment is limited with respect to the
size of the corpus it is capable of analysing, on the order of 101 documents. This is likely
too small to be of significant use in practice. Future work would explore the steps required
to provide the ability to to analyse corpora consisting of 102 or 103 documents in reasonable
time. Exactly what direction this work takes will depend on whether a pipeline or end-to-
end approach is adopted, as the way in which each method struggles with large datasets is
distinct.

• In the case of a pipeline approach, one of the key decisions to be made is how to determine
which pairs of claims to pass through the classification model to assess for the existence of an
argumentative relation between them. Testing all possible pairs of relations is computationally
infeasible for any meaningfully sized corpus, as there are

(# claims
2

)
possible relations. It is an

open question what heuristics to use to narrow down the set of candidates to achieve high
precision and recall.
Further, while it is clear that it is possible to structure single-document argument mining
as a single step, it is unclear how such networks handle such combinatorial explosion in the
number of possible connections. Understanding this may be key to successfully achieving
scalable end-to-end argument mining systems.
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• Currently, the system is concerned with fairly simple aspects of argumentative structure:
support, attack, or equivalence relations. This ignores the structure of many real world ar-
guments, where two or more premises may jointly imply a conclusion, but not in isolation.
An example of this can be seen in [35, Fig. 1(e)]. Future work could explore how such argu-
mentative structure could be identified by a neural network.
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4 User Interface Design
4.1 Background
4.1.1 Argument visualisation

Arguments are usually communicated using dialogue or prose, but such formats are arguably not
well suited to the task of conveying the precise network of claims, and the rules of inference between
such claims, that constitute an argument.

There have been various attempts to formalise ways of visualising the structure of arguments, as
a means to convey networks of claims and inferences more explicitly [29]. Early attempts include
Wigmore charts [42], designed to visualise evidence in legal settings, and Toulmin’s model of
argument [36], which is more general (and not exclusively visual).

More recently, the phrase argument map has come to mean a graph structure, usually a tree,
where each vertex corresponds to a claim, and each edge corresponds to an argumentative rela-
tionship between two claims, such as support or attack. (For clarity, we say claim a attacks claim b
if a constitutes a reason to think that b is untrue.) An prototypical example of an argument map
can be seen in Figure 6. Under different conventions, the propositions in an argument map can be
typed (e.g. evidence, assumption, premise, conclusion) or untyped.

Figure 6: An example of an argument map created using the Rationale software tool, taken
from [38].

A number of software tools have been produced for the purposes of visualising such tree struc-
tures. These include Araucaria [28], Rationale [39] and Kialo.

Argument maps can be useful tools to clarify the structure of arguments. But in practice, many
people find them tedious to create and interpret, and this limits the extent to which they have
been adopted. Additionally large argument maps can be cumbersome to navigate on average-sized
screens, which further limits their accessibility.

The assumption that argumentation maps form a strict tree, which is made almost uniformly in
modern argument mapping tools, is also open to question. As seen in the figure above, arguments
can be often better described as so-called hi-trees [20], to capture the situation where a collection
of premises jointly (but not individually) imply a conclusion. In addition, real-world argumentative
prose or dialogue does often not clearly demarcate distinct claims, which can lead to loops, and
both converging and diverging forks in the argument map if the map tries to remain faithful to
the language of the arguments, as originally presented.

The ongoing esotericness of argument mapping suggests that there is a need for further explo-
ration of user interfaces that make it easy and valuable to engage with such abstract structures.
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4.1.2 Networked document repositories

The rise of personal computing and the internet has led to various attempts to implement the
essence of a memex, a hypothetical device for storing personally relevant information envisioned
by Vannevar Bush in 1945 [4].

Attempts at creating this type of ‘second brain’ range from labyrinthine personal websites (eg.
https://www.gwern.net/, https://scaruffi.com/), to personal wikis (eg. https://tiddlywiki.
com/, https://orgmode.org/), to digital notebooks (eg. https://evernote.com/).

Over the past 18 months, there has been a resurgence of interest and innovation in these types
of projects. Three new projects in particular—Roam Research, Obsidian, and the notes of Andy
Matuschak—inspired the user interface ideas explored in this project.

Roam Research is a web-based note-taking application developed by Conor White-Sullivan that
has developed an active and engaged user base who (jokingly) refer to themselves as the ‘roamcult’.
One of its key features is that of bidirectional links or backlinks, which refers to a section at the
bottom of every note that lists all the other places in the repository where that note is referenced or
linked. An example of a Roam backlinks section can be seen in Figure 7. In a diligently maintained
database, this feature can be surprisingly useful in that it reminds you of connections between
related concepts that may not otherwise have been front-of-mind, and hence helps you to advance
your thinking more quickly.

Figure 7: An example of the backlinks section on a note in a Roam Research repository.

A similar local application is Obsidian, which stores notes as markdown files rather than in a
proprietary online database. A screenshot of Obsidian can be seen in Figure 8. It also implements
backlinks, as well as a graph view for visualising the structure of the repository, where notes
correspond to vertices and links between notes correspond to edges.
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Figure 8: A screenshot of the Obsidian note-taking tool. The layout is customisable, but the screen
shown here includes, from left to right, a visualisation of the graph structure of the
repository, an editing pane for a note, and the relevant backlinks for that note.

The third influence is not a public tool, but an interface built by user interface designer Andy
Matuschak for presenting his personal repository of notes (https://notes.andymatuschak.org/).
This project also implements backlinks, and additionally makes use of a horizontal scrolling inter-
face that facilitates exploration through the repository, making good use of the landscape orien-
tation of most screens. See Figure 9 for a screenshot.

Figure 9: A screen shot of Andy Matuschak’s note repository, showing the horizontal scrolling UI.

4.2 Prototype
The prototype application built during this project is public and can be found at the following
link: https://hunt-laboratory.github.io/navigator/.

20

https://andymatuschak.org/
https://andymatuschak.org/
https://notes.andymatuschak.org/
https://hunt-laboratory.github.io/navigator/


4.2.1 Concept

The concept for the user interface (UI) explored in this project is rooted in the correspondence
between argument maps, and repositories of networked notes. Both are graph structures at heart,
so innovations designed for navigating over graphs of note repositories might be fruitfully co-opted
to improve interfaces for navigating large argument maps.

Specifically, this project aimed to adapt Andy Matuschak’s horizontal-scrolling interface, and
implement a generalised version of backlinks, where edges do not just indicate generic links, but
can be typed, to separately indicate support, attack, or semantic similarity relations.

The interface is just that—an interface. It operates over a pre-existing multi-document argument
map, and requires no machine learning during the exploration phase. This makes it relatively fast,
as the computationally intensive argument mining can be performed in a one-off processing step
at the beginning of an analysis session.

4.2.2 Features

The app opens with a single pane listing a subset of claims from the complete multi-document
argument map to serve as ‘starting points’ (Fig. 10). By default, these are the top 5 claims as
determined by the Katz centrality of those claims within the graph. The number of claims, and the
metric used to sort them, are customisable. Other options for the sorting metric are the number
of supporting claims, number of attacking claims, number of semantically similar claims, and the
total number of connected claims.

Figure 10: The opening screen of the user interface, showing a set of chosen ‘starting point’ claims.

Below each claim, three buttons indicate the number of claims that support, attack, and are
semantically similar to that claim. These are represented by a green check mark, a red cross, and
a black tilde, respectively. Clicking on any of these buttons will open a new pane, an example of
which is shown in Figure 11. In the new pane, the origin claim (the claim from which you opened
it) is displayed at the top. Below, all the other claims that relate to that claim in the relevant way
are listed. For example, clicking on the green check mark beneath a claim will open a list of all the
other claims that directly support that claim.

Using the dropdown box at the top, any list of claims can be re-ordered by any of the same five
metrics used in the ‘starting points’ pane.
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Figure 11: The right pane in this screenshot is an example of the standard pane type that lists all
the supporting claims for a particular claim.

This workflow—noticing a claim of interest, clicking on one of the buttons beneath it, and
opening new pane with a list of related claims—can be repeated ad infinitum. New panes will
always open directly to the right of the pane from which they were opened. If a pane is no longer
of interest, it can be closed using the cross in the top-left. In most cases, panes open and close with
a smooth accordion-type animation, to help the user maintain visual continuity.

Figure 12: A second pane opened, this time listing attacking claims. As more panes are opened,
they will begin to overlap previous panes, but the user can scroll left and right using a
two-fingered swipe on a touchpad, or by holding down Shift and using the scroll wheel
on their mouse.

Often, it will be useful to view a particular claim in the context of the document from which it
originates. When hovering over any given claim, the name of the origin document will appear in
blue. Clicking on the name will open a pane with the text of the original document. The document
will autoscroll so that the claim of interest is visible, and the claim will appear in bold. All claims
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in the document will be highlighted in pale blue. Clicking on any of the claims will append it with
the standard set of three buttons, or generalised backlinks, that allow the user to open lists of
claims that are related to that claim. This can be seen in Figure 13.

Figure 13: An example of a pane that presents a claim in the context of the document from which
it has been extracted. All other claims in the document are highlighted in blue. Click
on any one will open the standard three buttons that indicate argumentative relations.

As the number of open panes grows large, it can be difficult to keep track of context and your
location within the argument map. To some extent, doing so is not a priority: this is designed to
be an exploratory tool that can surface ideas and evidence that require follow-up analysis. But one
small feature is designed to help the user keep track of their location: open panes will ‘stack up’ at
the left or right edge of the screen, and their coloured border will be visible even when their text
is obscured from view. This provides a subtle indication of location, and the sequence of stacked
border colours loosely tracks the path through which you arrived at the current pane.

Figure 14: When there are many panes open, they will stack up at the left and right of the screen.

23



A final usability feature is the ability to pin panes to the left or right of the screen. This will
take them out of the usual flow of panes, so that they are always visible as a reference point. An
example of this can be seen in Figure 15, where a source document has been pinned to the right.

Figure 15: A blue source document pane, pinned to the right of the screen.

By default, the black ‘starting points’ pane is pinned to the left of the screen, but can be pinned
and unpinned freely, as can any other pane.

4.2.3 Technical details

The UI is implemented as a client-side, browser-based web application, written in JavaScript us-
ing the neverland framework (https://github.com/WebReflection/neverland). The neverland
framework has very similar functionality to other popular web development frameworks such as
React, but is quicker, much smaller, and does not need to be compiled as it only requires vanilla
JavaScript.

For demonstration purposes, the application is hosted in a public GitHub repository and made
accessible as a GitHub Pages site.

4.3 Future work
The interface is quite usable as is, but could be made more so in a number of ways. Below, we list
directions for future work.

• Provide the ability to save the state of the tools, so that it can be closed and re-opened to
the same pane configuration, without re-analysing the texts.

• Aggregate semantically similar claims within any list, so that that multiple semantically
similar claims do not misleadingly appear as distinct.

• Provide mechanisms for searching and filtering claims in useful ways, such as by user-added
tag or source document.

• Provide buttons to access argumentative relations in both directions. Currently, the interface
only gives the ability to view incoming relations. For example, all the claims that support a
given node, but not the claims that it, in turn, supports. It would be useful to provide the
other direction as well so that users can navigate both forwards and backwards through the
graph.
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• Figure out ways to better preserve context. At the moment, it can be difficult to keep track
of context and history when there is a large number of panes open. To some extent this is
an example of a fundamental problem with ordering ideas - networks of concepts tend to
be fractal, so forcing them into a linear sequence will inevitably mean that some related
concepts end up far apart. But there are directions to explore that may help. For example,
simply allowing the user to save or star claims of particular interest would allow them to
be relocated more easily. A deeper rebuild could explore a treemap layout of panes on large
screens, which would better be able to reflect the structure of the underlying argument map.

• As noted earlier, real world arguments often take on a hi-tree structure [20]. A more general
interface would have the ability to reflect such structure, indicating how multiple claims
jointly support or attack another claim, where none of those claims does so individually.

• The interface is already relatively quick, but there is some unnecessary processing (re-
searching for relevant claims that have already been found) that could be obviated with
some work to optimise the back end of the interface. This would allow the interface to re-
main responsive when exploring argument maps that are orders of magnitude larger than
those considered in this project.

• Before rolling out any new software to a workforce, it is important to have confidence that
the software will be user friendly and an improvement on existing systems. This is particu-
larly true for intelligence organisations, where it has been noted that new tools for analysis
frequently fail to be adopted because they are designed by outsiders with little consideration
for how they fit into analysts’ existing workflows. For instance, see the following excerpt from
Hoffman et al. [9].

In effect, the tools are instances of the trap of designer-centred design. This trap
is hard to avoid – smart and well-intentioned people develop their own theory of
the work to be supported, come to believe they can ‘fill the shoes’ of the target
users, and then build a tool that is, in effect, an hypothesis of how the work will
change once the tool is introduced. Generally, the hypothesis is that work will be
improved, but there are almost always certain kinds of unanticipated consequences.
Users have to fight the technology and are prevented from being fully engaged in
the problem. As a result, they often end-up creating workarounds or kluges such
that they can progress their work in spite of the technology (Koopman and Hoffman
2003, Moon and Hoffman 2005, Laplante et al. 2007).

When a support tool is presented for consideration, one must ask these kinds of
questions: Was any form of cognitive task analysis undertaken to understand the
user’s current work methods, challenges and bottlenecks? What model of work does
the tool support? How involved were analysts in the tool development process? Is
there convincing empirical evidence that the tool is useful and understandable?
Once a new tool is in place, is the changed work observable such that performance
and tool effectiveness and impact can be studied?

Sincere development of Navigator would involve usability testing, analyst feedback, and well-
designed experiments to test whether the software truly improves analysts’ ability to extract
value from large document corpora.
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